If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x+15=0
a = 3; b = 19; c = +15;
Δ = b2-4ac
Δ = 192-4·3·15
Δ = 181
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{181}}{2*3}=\frac{-19-\sqrt{181}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{181}}{2*3}=\frac{-19+\sqrt{181}}{6} $
| (2x+5)+(3x+11)=(4x+10)+(7x+6) | | 5p^2-75=0 | | 2x/10=5x-15/10 | | 7x+4x=(-19)+5×2x-14 | | 7x+4x=(-19)+5× | | 8(4a-2)=94 | | 2/3x+1/5x=3/7 | | 3(2a+8)=a+34 | | 4y+7=18 | | 12x-5x-9=40 | | 9(a+2)=9+ | | 7(2+5a)=49 | | 2/5q+4/2=2/7 | | 12-4=-x/2 | | 35x=7=63 | | 36=14n-4 | | 2(3y–7)=6y– | | -7=-(3/x-4) | | -7=-3/x-4 | | 5(2a+6)=50 | | 5(n+4)-(n-7)=-11 | | 3a*8=6 | | -2y+5y=20 | | 4.32x=4 | | 4(4.324)=x | | -19=-7+-2u | | (20+.5x)+.15(20+.5x)=62.1 | | -2r+-5=1 | | 2(3x+5)=7(x+4) | | q/2+8=11 | | 2/9y=14 | | x/2-x/7=8 |